skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Wenye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract: Task offloading, which refers to processing (computation-intensive) data at facilitating servers, is an exemplary service that greatly benefits from the fog computing paradigm, which brings computation resources to the edge network for reduced application latency. However, the resource-consuming nature of task execution, as well as the sheer scale of IoT systems, raises an open and challenging question: whether fog is a remedy or a resource drain, considering frequent and massive offloading operations? This question is nontrivial, because participants of offloading processes, i.e., fog nodes, may have diversified technical specifications, while task generators, i.e., task nodes, may employ a variety of criteria to select offloading targets, resulting in an unmanageable space for performance evaluation. To overcome these challenges of heterogeneity, we propose a gravity model that characterizes offloading criteria with various gravity functions, in which individual/system resource consumption can be examined by the device/network effort metrics, respectively. Simulation results show that the proposed gravity model can flexibly describe different offloading schemes in terms of application and node-level behavior. We find that the expected lifetime and device effort of individual tasks decrease as O(1/N) over the network size N , while the network effort decreases much slower, even remain O(1) when load balancing measures are employed, indicating a possible resource drain in the edge network. 
    more » « less
  3. Abstract: With the proliferation of Dynamic Spectrum Access (DSA), Internet of Things (IoT), and Mobile Edge Computing (MEC) technologies, various methods have been proposed to deduce key network and user information in cellular systems, such as available cell bandwidths, as well as user locations and mobility. Not only is such information dominated by cellular networks of vital significance on other systems co-located spectrum-wise and/or geographically, but applications within cellular systems can also benefit remarkably from inferring such information, as exemplified by the endeavours made by video streaming to predict cell bandwidth. Hence, we are motivated to develop a new tool to uncover as much information used to be closed to outsiders or user devices as possible with off-the-shelf products. Given the wide-spread deployment of LTE and its continuous evolution to 5G, we design and implement U-CIMAN, a client-side system to accurately UnCover as much Information in Mobile Access Networks as allowed by LTE encryption. Among the many potential applications of U-CIMAN, we highlight one use case of accurately measuring the spectrum tenancy of a commercial LTE cell. Besides measuring spectrum tenancy in unit of resource blocks, U-CIMAN discovers user mobility and traffic types associated with spectrum usage through decoded control messages and user data bytes. We conduct 4-month detailed accurate spectrum measurement on a commercial LTE cell, and the observations include the predictive power of Modulation and Coding Scheme on spectrum tenancy, and channel off-time bounded under 10 seconds, to name a few. 
    more » « less
  4. Abstract—The mainstay of current spectrum access grants exclusive rights to proprietary occupants who exhibit tidal traffic patterns, leading to low usage of valuable spectrum resources. To remedy this situation, Dynamic Spectrum Access (DSA) is proposed to allow Secondary Users (SUs) to opportunistically exploit idle spectrum slices left by Primary Users (PUs). The key to the success of DSA lies in SUs’ knowledge on radio activities of PUs. To enhance the understanding of PU spectrum tenancy patterns, various mathematical models have been proposed to describe spectrum occupancy dynamics. However, there are still two overlooked aspects in existing studies on spectrum tenancy modeling, i.e., time-varying spectrum tenancy patterns and multi- ple channels within the same Radio Access Technology (RAT). To address the two issues, we apply a change detection algorithm to discover time points where spectrum tenancy patterns vary, and propose to characterize spectrum usage in a multi-channel RAT by the Vector Autoregressive (VAR) model. Through analyzing LTE spectrum tenancy data with the algorithm and the model, we validate that the segment size discovered by the online change detection method coincides with the one obtained by brute force, and VAR outperforms the widely adopted on/off model. 
    more » « less